From: Brian Warner Date: Sat, 2 Dec 2006 02:09:14 +0000 (-0700) Subject: add the 'Denver Airport' design doc, for Chord-based peer selection X-Git-Tag: tahoe_v0.1.0-0-UNSTABLE~501 X-Git-Url: https://git.rkrishnan.org/%5B/%5D%20/uri/%22doc.html/README.win32?a=commitdiff_plain;h=09aedcac7b0305b264426120c093a350f824c561;p=tahoe-lafs%2Ftahoe-lafs.git add the 'Denver Airport' design doc, for Chord-based peer selection --- diff --git a/docs/denver.txt b/docs/denver.txt new file mode 100644 index 00000000..9ba5795f --- /dev/null +++ b/docs/denver.txt @@ -0,0 +1,182 @@ +The "Denver Airport" Protocol + + (discussed whilst returning robk to DEN, 12/1/06) + +This is a scaling improvement on the "Select Peers" phase of Tahoe2. The +problem it tries to address is the storage and maintenance of the 1M-long +peer list, and the relative difficulty of gathering long-term reliability +information on a useful numbers of those peers. + +In DEN, each node maintains a Chord-style set of connections to other nodes: +log2(N) "finger" connections to distant peers (the first of which is halfway +across the ring, the second is 1/4 across, then 1/8th, etc). These +connections need to be kept alive with relatively short timeouts (5s?), so +any breaks can be rejoined quickly. In addition to the finger connections, +each node must also remain aware of K "successor" nodes (those which are +immediately clockwise of the starting point). The node is not required to +maintain connections to these, but it should remain informed about their +contact information, so that it can create connections when necessary. We +probably need a connection open to the immediate successor at all times. + +Since inbound connections exist too, each node has something like 2*log2(N) +plus up to 2*K connections. + +Each node keeps history of uptime/availability of the nodes that it remains +connected to. Each message that is sent to these peers includes an estimate +of that peer's availability from the point of view of the outside world. The +receiving node will average these reports together to determine what kind of +reliability they should announce to anyone they accept leases for. This +reliability is expressed as a percentage uptime: P=1.0 means the peer is +available 24/7, P=0.0 means it is almost never reachable. + + +When a node wishes to publish a file, it creates a list of (verifierid, +sharenum) tuples, and computes a hash of each tuple. These hashes then +represent starting points for the landlord search: + + starting_points = [(sharenum,sha(verifierid + str(sharenum))) + for sharenum in range(256)] + +The node then constructs a reservation message that contains enough +information for the potential landlord to evaluate the lease, *and* to make a +connection back to the starting node: + + message = [verifierid, sharesize, requestor_pburl, starting_points] + +The node looks through its list of finger connections and splits this message +into up to log2(N) smaller messages, each of which contains only the starting +points that should be sent to that finger connection. Specifically we sent a +starting_point to a finger A if the nodeid of that finger is <= the +starting_point and if the next finger B is > starting_point. Each message +sent out can contain multiple starting_points, each for a different share. + +When a finger node receives this message, it performs the same splitting +algorithm, sending each starting_point to other fingers. Eventually a +starting_point is received by a node that knows that the starting_point lies +between itself and its immediate successor. At this point the message +switches from the "hop" mode (following fingers) to the "search" mode +(following successors). + +While in "search" mode, each node interprets the message as a lease request. +It checks its storage pool to see if it can accomodate the reservation. If +so, it uses requestor_pburl to contact the originator and announces its +willingness to host the given sharenum. This message will include the +reliability measurement derived from the host's counterclockwise neighbors. + +If the recipient cannot host the share, it forwards the request on to the +next successor, which repeats the cycle. Each message has a maximum hop count +which limits the number of peers which may be searched before giving up. If a +node sees itself to be the last such hop, it must establish a connection to +the originator and let them know that this sharenum could not be hosted. + +The originator sends out something like 100 or 200 starting points, and +expects to get back responses (positive or negative) in a reasonable amount +of time. (perhaps if we receive half of the responses in time T, wait for a +total of 2T for the remaining ones). If no response is received with the +timeout, either re-send the requests for those shares (to different fingers) +or send requests for completely different shares. + +Each share represents some fraction of a point "S", such that the points for +enough shares to reconstruct the whole file total to 1.0 points. I.e., if we +construct 100 shares such that we need 25 of them to reconstruct the file, +then each share represents .04 points. + +As the positive responses come in, we accumulate two counters: the capacity +counter (which gets a full S points for each positive response), and the +reliability counter (which gets S*(reliability-of-host) points). The capacity +counter is not allowed to go above some limit (like 4x), as determined by +provisioning. The node keeps adding leases until the reliability counter has +gone above some other threshold (larger but close to 1.0). + +[ at download time, each host will be able to provide the share back with + probability P times an exponential decay factor related to peer death. Sum + these probabilities to get the average number of shares that will be + available. The interesting thing is actually the distribution of these + probabilities, and what threshold you have to pick to get a sufficiently + high chance of recovering the file. If there are N identical peers with + probability P, the number of recovered shares will have a gaussian + distribution with an average of N*P and a stddev of (??). The PMF of this + function is an S-curve, with a sharper slope when N is large. The + probability of recovering the file is the value of this S curve at the + threshold value (the number of necessary shares). + + P is not actually constant across all peers, rather we assume that it has + its own distribution: maybe gaussian, more likely exponential (power law). + This changes the shape of the S-curve. Assuming that we can characterize + the distribution of P with perhaps two parameters (say meanP and stddevP), + the S-curve is a function of meanP, stddevP, N, and threshold... + + To get 99.99% or 99.999% recoverability, we must choose a threshold value + high enough to accomodate the random variations and uncertainty about the + real values of P for each of the hosts we've selected. By counting + reliability points, we are trying to estimate meanP/stddevP, so we know + which S-curve to look at. The threshold is fixed at 1.0, since that's what + erasure coding tells us we need to recover the file. The job is then to add + hosts (increasing N and possibly changing meanP/stddevP) until our + recoverability probability is as high as we want. +] + +The originator takes all acceptance messages and adds them in order to the +list of landlords that will be used to host the file. It stops when it gets +enough reliability points. Note that it does *not* discriminate against +unreliable hosts: they are less likely to have been found in the first place, +so we don't need to discriminate against them a second time. We do, however, +use the reliability points to acknowledge that sending data to an unreliable +peer is not as useful as sending it to a reliable one (there is still value +in doing so, though). The remaining reservation-acceptance messages are +cancelled and then put aside: if we need to make a second pass, we ask those +peers first. + +Shares are then created and published as in Tahoe2. If we lose a connection +during the encoding, that share is lost. If we lose enough shares, we might +want to generate more to make up for them: this is done by using the leftover +acceptance messages first, then triggering a new Chord search for the +as-yet-unaccepted sharenums. These new peers will get shares from all +segments that have not yet been finished, then a second pass will be made to +catch them up on the earlier segments. + +Properties of this approach: + the total number of peers that each node must know anything about is bounded + to something like 2*log2(N) + K, probably on the order of 50 to 100 total. + This is the biggest advantage, since in tahoe2 each node must know at least + the nodeid of all 1M peers. The maintenance traffic should be much less as a + result. + + each node must maintain open (keep-alived) connections to something like + 2*log2(N) peers. In tahoe2, this number is 0 (well, probably 1 for the + queen). + + during upload, each node must actively use 100 connections to a random set + of peers to push data (just like tahoe2). + + The probability that any given share-request gets a response is equal to the + number of hops it travels through times the chance that a peer dies while + holding on to the message. This should be pretty small, as the message + should only be held by a peer for a few seconds (more if their network is + busy). In tahoe2, each share-request always gets a response, since they are + made directly to the target. + +I visualize the peer-lookup process as the originator creating a +message-in-a-bottle for each share. Each message says "Dear Sir/Madam, I +would like to store X bytes of data for file Y (share #Z) on a system close +to (but not below) nodeid STARTING_POINT. If you find this amenable, please +contact me at PBURL so we can make arrangements.". These messages are then +bundled together according to their rough destination (STARTING_POINT) and +sent somewhere in the right direction. + +Download happens the same way: lookup messages are disseminated towards the +STARTING_POINT and then search one successor at a time from there. There are +two ways that the share might go missing: if the node is now offline (or has +for some reason lost its shares), or if new nodes have joined since the +original upload and the search depth (maximum hop count) is too small to +accomodate the churn. Both result in the same amount of localized traffic. In +the latter case, a storage node might want to migrate the share closer to the +starting point, or perhaps just send them a note to remember a pointer for +the share. + +Checking: anyone who wishes to do a filecheck needs to send out a lookup +message for every potential share. These lookup messages could have a higher +search depth than usual. It would be useful to know how many peers each +message went through before being returned: this might be useful to perform +repair by instructing the old host (which is further from the starting point +than you'd like) to push their share closer towards the starting point.