From 8beb5ea7990a347ccfad2fc33bb2803ce34ddb27 Mon Sep 17 00:00:00 2001
From: Zooko O'Whielacronx <zooko@zooko.com>
Date: Wed, 18 Aug 2010 20:06:30 -0700
Subject: [PATCH] add simulator to explore the trade-offs for hashed-based
 digital signatures

---
 misc/simulators/hashbasedsig.py | 339 ++++++++++++++++++++++++++++++++
 1 file changed, 339 insertions(+)
 create mode 100644 misc/simulators/hashbasedsig.py

diff --git a/misc/simulators/hashbasedsig.py b/misc/simulators/hashbasedsig.py
new file mode 100644
index 00000000..5e1e42f0
--- /dev/null
+++ b/misc/simulators/hashbasedsig.py
@@ -0,0 +1,339 @@
+#!python
+# MIT or any Tahoe license.
+
+# range of hash output lengths
+range_L_hash = [128]
+
+lg_M = 53                   # lg(required number of signatures before losing security)
+
+limit_bytes = 480000        # limit on signature length
+limit_cost = 500            # limit on Mcycles_Sig + weight_ver*Mcycles_ver
+weight_ver = 1              # how important verification cost is relative to signature cost
+                            # (note: setting this too high will just exclude useful candidates)
+
+L_block = 512               # bitlength of hash input blocks
+L_pad   = 64                # bitlength of hash padding overhead (for M-D hashes)
+L_label = 80                # bitlength of hash position label
+L_prf   = 256               # bitlength of hash output when used as a PRF
+cycles_per_byte = 15.8      # cost of hash
+
+Mcycles_per_block = cycles_per_byte * L_block / (8 * 1000000.0)
+
+
+from math import floor, ceil, log, log1p, pow, e, sqrt
+from sys import stderr
+from gc import collect
+
+def lg(x):
+    return log(x, 2)
+def ln(x):
+    return log(x, e)
+def ceil_log(x, B):
+    return int(ceil(log(x, B)))
+def ceil_div(x, y):
+    return int(ceil(float(x) / float(y)))
+def floor_div(x, y):
+    return int(floor(float(x) / float(y)))
+
+# number of compression function evaluations to hash k hash-outputs
+# we assume that there is a label in each block
+def compressions(k):
+    return ceil_div(k + L_pad, L_block - L_label)
+
+# sum of power series sum([pow(p, i) for i in range(n)])
+def sum_powers(p, n):
+    if p == 1: return n
+    return (pow(p, n) - 1)/(p - 1)
+
+
+def make_candidate(B, K, K1, K2, q, T, T_min, L_hash, lg_N, sig_bytes, c_sign, c_ver, c_ver_pm):
+    Mcycles_sign   = c_sign   * Mcycles_per_block
+    Mcycles_ver    = c_ver    * Mcycles_per_block
+    Mcycles_ver_pm = c_ver_pm * Mcycles_per_block
+    cost = Mcycles_sign + weight_ver*Mcycles_ver
+
+    if sig_bytes >= limit_bytes or cost > limit_cost:
+        return []
+
+    return [{
+        'B': B, 'K': K, 'K1': K1, 'K2': K2, 'q': q, 'T': T,
+        'T_min': T_min,
+        'L_hash': L_hash,
+        'lg_N': lg_N,
+        'sig_bytes': sig_bytes,
+        'c_sign': c_sign,
+        'Mcycles_sign': Mcycles_sign,
+        'c_ver': c_ver,
+        'c_ver_pm': c_ver_pm,
+        'Mcycles_ver': Mcycles_ver,
+        'Mcycles_ver_pm': Mcycles_ver_pm,
+        'cost': cost,
+    }]
+
+
+# K1 = size of root Merkle tree
+# K  = size of middle Merkle trees
+# K2 = size of leaf Merkle trees
+# q  = number of revealed private keys per signed message
+
+# Winternitz with B < 4 is never optimal. For example, going from B=4 to B=2 halves the
+# chain depth, but that is cancelled out by doubling (roughly) the number of digits.
+range_B = xrange(4, 33)
+
+M = pow(2, lg_M)
+
+def calculate(K, K1, K2, q_max, L_hash, trees):
+    candidates = []
+    lg_K  = lg(K)
+    lg_K1 = lg(K1)
+    lg_K2 = lg(K2)
+
+    # We want the optimal combination of q and T. That takes too much time and memory
+    # to search for directly, so we start by calculating the lowest possible value of T
+    # for any q. Then for potential values of T, we calculate the smallest q such that we
+    # will have at least L_hash bits of security against forgery using revealed private keys
+    # (i.e. this method of forgery is no easier than finding a hash preimage), provided
+    # that fewer than 2^lg_S_min messages are signed.
+
+    # min height of certification tree (excluding root and bottom layer)
+    T_min = ceil_div(lg_M - lg_K1, lg_K)
+
+    last_q = None
+    for T in xrange(T_min, T_min+21):
+        # lg(total number of leaf private keys)
+        lg_S = lg_K1 + lg_K*T
+        lg_N = lg_S + lg_K2
+
+        # Suppose that m signatures have been made. The number of times X that a given bucket has
+        # been chosen follows a binomial distribution B(m, p) where p = 1/S and S is the number of
+        # buckets. I.e. Pr(X = x) = C(m, x) * p^x * (1-p)^(m-x).
+        #
+        # If an attacker picks a random seed and message that falls into a bucket that has been
+        # chosen x times, then at most q*x private values in that bucket have been revealed, so
+        # (ignoring the possibility of guessing private keys, which is negligable) the attacker's
+        # success probability for a forgery using the revealed values is at most min(1, q*x / K2)^q.
+        #
+        # Let j = floor(K2/q). Conditioning on x, we have
+        #
+        # Pr(forgery) = sum_{x = 0..j}(Pr(X = x) * (q*x / K2)^q) + Pr(x > j)
+        #             = sum_{x = 1..j}(Pr(X = x) * (q*x / K2)^q) + Pr(x > j)
+        #
+        # We lose nothing by approximating (q*x / K2)^q as 1 for x > 4, i.e. ignoring the resistance
+        # of the HORS scheme to forgery when a bucket has been chosen 5 or more times.
+        #
+        # Pr(forgery) < sum_{x = 1..4}(Pr(X = x) * (q*x / K2)^q) + Pr(x > 4)
+        #
+        # where Pr(x > 4) = 1 - sum_{x = 0..4}(Pr(X = x))
+        #
+        # We use log arithmetic here because values very close to 1 cannot be represented accurately
+        # in floating point, but their logarithms can (provided we use appropriate functions such as
+        # log1p).
+
+        lg_p = -lg_S
+        lg_1_p = log1p(-pow(2, lg_p))/ln(2)        # lg(1-p), computed accurately
+        j = 5
+        lg_px = [lg_1_p * M]*j
+
+        # We approximate lg(M-x) as lg(M)
+        lg_px_step = lg_M + lg_p - lg_1_p
+        for x in xrange(1, j):
+            lg_px[x] = lg_px[x-1] - lg(x) + lg_px_step
+
+        def find_min_q():
+            for q in xrange(1, q_max+1):
+                lg_q = lg(q)
+                lg_pforge = [lg_px[x] + (lg_q*x - lg_K2)*q for x in xrange(1, j)]
+                if max(lg_pforge) < -L_hash + lg(j) and lg_px[j-1] + 1.0 < -L_hash:
+                    #print "K = %d, K1 = %d, K2 = %d, L_hash = %d, lg_K2 = %.3f, q = %d, lg_pforge_1 = %.3f, lg_pforge_2 = %.3f, lg_pforge_3 = %.3f" \
+                    #      % (K, K1, K2, L_hash, lg_K2, q, lg_pforge_1, lg_pforge_2, lg_pforge_3)
+                    return q
+            return None
+
+        q = find_min_q()
+        if q is None or q == last_q:
+            # if q hasn't decreased, this will be strictly worse than the previous candidate
+            continue
+        last_q = q
+
+        # number of compressions to compute the Merkle hashes
+        (h_M,  c_M,  _) = trees[K]
+        (h_M1, c_M1, _) = trees[K1]
+        (h_M2, c_M2, (dau, tri)) = trees[K2]
+
+        # B = generalized Winternitz base
+        for B in range_B:
+            # n is the number of digits needed to sign the message representative and checksum.
+            # The representation is base-B, except that we allow the most significant digit
+            # to be up to 2B-1.
+            n_L = ceil_div(L_hash-1, lg(B))
+            firstL_max = floor_div(pow(2, L_hash)-1, pow(B, n_L-1))
+            C_max = firstL_max + (n_L-1)*(B-1)
+            n_C = ceil_log(ceil_div(C_max, 2), B)
+            n = n_L + n_C
+            firstC_max = floor_div(C_max, pow(B, n_C-1))
+
+            # Total depth of Winternitz hash chains. The chains for the most significant
+            # digit of the message representative and of the checksum may be a different
+            # length to those for the other digits.
+            c_D = (n-2)*(B-1) + firstL_max + firstC_max
+
+            # number of compressions to hash a Winternitz public key
+            c_W = compressions(n*L_hash + L_label)
+
+            # bitlength of a single Winternitz signature and authentication path
+            L_MW  = (n + h_M ) * L_hash
+            L_MW1 = (n + h_M1) * L_hash
+
+            # bitlength of the HORS signature and authentication paths
+            # For all but one of the q authentication paths, one of the sibling elements in
+            # another path is made redundant where they intersect. This cancels out the hash
+            # that would otherwise be needed at the bottom of the path, making the total
+            # length of the signature q*h_M2 + 1 hashes, rather than q*(h_M2 + 1).
+            L_leaf = (q*h_M2 + 1) * L_hash
+
+            # length of the overall GMSS+HORS signature and seeds
+            sig_bytes = ceil_div(L_MW1 + T*L_MW + L_leaf + L_prf + ceil(lg_N), 8)
+
+            c_MW  = K *(c_D + c_W) + c_M  + ceil_div(K *n*L_hash, L_prf)
+            c_MW1 = K1*(c_D + c_W) + c_M1 + ceil_div(K1*n*L_hash, L_prf)
+
+            # For simplicity, c_sign and c_ver don't take into account compressions saved
+            # as a result of intersecting authentication paths in the HORS signature, so
+            # are slight overestimates.
+
+            c_sign = c_MW1 + T*c_MW + q*(c_M2 + 1) + ceil_div(K2*L_hash, L_prf)
+
+            # *expected* number of compressions to verify a signature
+            c_ver = c_D/2.0 + c_W + c_M1 + T*(c_D/2.0 + c_W + c_M) + q*(c_M2 + 1)
+            c_ver_pm = (1 + T)*c_D/2.0
+
+            candidates += make_candidate(B, K, K1, K2, q, T, T_min, L_hash, lg_N, sig_bytes, c_sign, c_ver, c_ver_pm)
+
+    return candidates
+
+def search():
+    for L_hash in range_L_hash:
+        print >>stderr, "collecting...   \r",
+        collect()
+
+        print >>stderr, "precomputing... \r",
+
+        """
+        # d/dq (lg(q+1) + L_hash/q) = 1/(ln(2)*(q+1)) - L_hash/q^2
+        # Therefore lg(q+1) + L_hash/q is at a minimum when 1/(ln(2)*(q+1)) = L_hash/q^2.
+        # Let alpha = L_hash*ln(2), then from the quadratic formula, the integer q that
+        # minimizes lg(q+1) + L_hash/q is the floor or ceiling of (alpha + sqrt(alpha^2 - 4*alpha))/2.
+        # (We don't want the other solution near 0.)
+
+        alpha = floor(L_hash*ln(2))  # float
+        q = floor((alpha + sqrt(alpha*(alpha-4)))/2)
+        if lg(q+2) + L_hash/(q+1) < lg(q+1) + L_hash/q:
+            q += 1
+        lg_S_margin = lg(q+1) + L_hash/q
+        q_max = int(q)
+
+        q = floor(L_hash*ln(2))  # float
+        if lg(q+1) + L_hash/(q+1) < lg(q) + L_hash/q:
+            q += 1
+        lg_S_margin = lg(q) + L_hash/q
+        q_max = int(q)
+        """
+        q_max = 4000
+
+        # find optimal Merkle tree shapes for this L_hash and each K
+        trees = {}
+        K_max = 50
+        c2 = compressions(2*L_hash + L_label)
+        c3 = compressions(3*L_hash + L_label)
+        for dau in xrange(0, 10):
+            a = pow(2, dau)
+            for tri in xrange(0, ceil_log(30-dau, 3)):
+                x = int(a*pow(3, tri))
+                h = dau + 2*tri
+                c_x = int(sum_powers(2, dau)*c2 + a*sum_powers(3, tri)*c3)
+                for y in xrange(1, x+1):
+                    if tri > 0:
+                        # If the bottom level has arity 3, then for every 2 nodes by which the tree is
+                        # imperfect, we can save c3 compressions by pruning 3 leaves back to their parent.
+                        # If the tree is imperfect by an odd number of nodes, we can prune one extra leaf,
+                        # possibly saving a compression if c2 < c3.
+                        c_y = c_x - floor_div(x-y, 2)*c3 - ((x-y) % 2)*(c3-c2)
+                    else:
+                        # If the bottom level has arity 2, then for each node by which the tree is
+                        # imperfect, we can save c2 compressions by pruning 2 leaves back to their parent.
+                        c_y = c_x - (x-y)*c2
+
+                    if y not in trees or (h, c_y, (dau, tri)) < trees[y]:
+                        trees[y] = (h, c_y, (dau, tri))
+
+        #for x in xrange(1, K_max+1):
+        #    print x, trees[x]
+
+        candidates = []
+        progress = 0
+        fuzz = 0
+        complete = (K_max-1)*(2200-200)/100
+        for K in xrange(2, K_max+1):
+            for K2 in xrange(200, 2200, 100):
+                for K1 in xrange(max(2, K-fuzz), min(K_max, K+fuzz)+1):
+                    candidates += calculate(K, K1, K2, q_max, L_hash, trees)
+                progress += 1
+                print >>stderr, "searching: %3d %% \r" % (100.0 * progress / complete,),
+
+        print >>stderr, "filtering...    \r",
+        step = 2.0
+        bins = {}
+        limit = floor_div(limit_cost, step)
+        for bin in xrange(0, limit+2):
+            bins[bin] = []
+
+        for c in candidates:
+            bin = floor_div(c['cost'], step)
+            bins[bin] += [c]
+
+        del candidates
+
+        # For each in a range of signing times, find the best candidate.
+        best = []
+        for bin in xrange(0, limit):
+            candidates = bins[bin] + bins[bin+1] + bins[bin+2]
+            if len(candidates) > 0:
+                best += [min(candidates, key=lambda c: c['sig_bytes'])]
+
+        def format_candidate(candidate):
+            return ("%(B)3d  %(K)3d  %(K1)3d  %(K2)5d %(q)4d %(T)4d  "
+                    "%(L_hash)4d   %(lg_N)5.1f  %(sig_bytes)7d   "
+                    "%(c_sign)7d (%(Mcycles_sign)7.2f) "
+                    "%(c_ver)7d +/-%(c_ver_pm)5d (%(Mcycles_ver)5.2f +/-%(Mcycles_ver_pm)5.2f)   "
+                   ) % candidate
+
+        print >>stderr, "                \r",
+        if len(best) > 0:
+            print "  B    K   K1     K2    q    T  L_hash  lg_N  sig_bytes  c_sign (Mcycles)        c_ver     (    Mcycles   )"
+            print "---- ---- ---- ------ ---- ---- ------ ------ --------- ------------------ --------------------------------"
+
+            best.sort(key=lambda c: (c['sig_bytes'], c['cost']))
+            last_sign = None
+            last_ver = None
+            for c in best:
+                if last_sign is None or c['c_sign'] < last_sign or c['c_ver'] < last_ver:
+                    print format_candidate(c)
+                    last_sign = c['c_sign']
+                    last_ver = c['c_ver']
+
+            print
+        else:
+            print "No candidates found for L_hash = %d or higher." % (L_hash)
+            return
+
+        del bins
+        del best
+
+print "Maximum signature size: %d bytes" % (limit_bytes,)
+print "Maximum (signing + %d*verification) cost: %.1f Mcycles" % (weight_ver, limit_cost)
+print "Hash parameters: %d-bit blocks with %d-bit padding and %d-bit labels, %.2f cycles per byte" \
+      % (L_block, L_pad, L_label, cycles_per_byte)
+print "PRF output size: %d bits" % (L_prf,)
+print "Security level given by L_hash is maintained for up to 2^%d signatures.\n" % (lg_M,)
+
+search()
-- 
2.45.2