
CIS 194: Homework 10
Due Monday, April 1

• Files you should submit: AParser.hs. You should take the versions
that we have provided and add your solutions to them.

Introduction

A parser is an algorithm which takes unstructured data as input (of-
ten a String) and produces structured data as output. For example,
when you load a Haskell file into ghci, the first thing it does is parse
your file in order to turn it from a long String into an abstract syntax
tree representing your code in a more structured form.

Concretely, we will represent a parser for a value of type a as a
function which takes a String represnting the input to be parsed,
and succeeds or fails; if it succeeds, it returns the parsed value along
with whatever part of the input it did not use.

newtype Parser a

= Parser { runParser :: String -> Maybe (a, String) }

For example, satisfy takes a Char predicate and constructs a
parser which succeeds only if it sees a Char that satisfies the pred-
icate (which it then returns). If it encounters a Char that does not
satisfy the predicate (or an empty input), it fails.

satisfy :: (Char -> Bool) -> Parser Char

satisfy p = Parser f

where

f [] = Nothing -- fail on the empty input

f (x:xs) -- check if x satisfies the predicate

-- if so, return x along with the remainder

-- of the input (that is, xs)

| p x = Just (x, xs)

| otherwise = Nothing -- otherwise, fail

Using satisfy, we can also define the parser char, which expects to
see exactly a given character and fails otherwise.

char :: Char -> Parser Char

char c = satisfy (== c)

For example:

*Parser> runParser (satisfy isUpper) "ABC"

Just (’A’,"BC")

cis 194: homework 10 2

*Parser> runParser (satisfy isUpper) "abc"

Nothing

*Parser> runParser (char ’x’) "xyz"

Just (’x’,"yz")

For convenience, we’ve also provided you with a parser for posi-
tive integers:

posInt :: Parser Integer

posInt = Parser f

where

f xs

| null ns = Nothing

| otherwise = Just (read ns, rest)

where (ns, rest) = span isDigit xs

Tools for building parsers

However, implementing parsers explicitly like this is tedious and
error-prone for anything beyond the most basic primitive parsers.
The real power of this approach comes from the ability to create com-
plex parsers by combining simpler ones. And this power of combining
will be given to us by. . . you guessed it, Applicative.

Exercise 1
First, you’ll need to implement a Functor instance for Parser.

Hint: You may find it useful to implement a function

first :: (a -> b) -> (a,c) -> (b,c)

Exercise 2
Now implement an Applicative instance for Parser:

• pure a represents the parser which consumes no input and suc-
cessfully returns a result of a.

• p1 <*> p2 represents the parser which first runs p1 (which will
consume some input and produce a function), then passes the
remaining input to p2 (which consumes more input and produces
some value), then returns the result of applying the function to the
value. However, if either p1 or p2 fails then the whole thing should
also fail (put another way, p1 <*> p2 only succeeds if both p1 and
p2 succeed).

So what is this good for? Recalling the Employee example from
class,

cis 194: homework 10 3

type Name = String

data Employee = Emp { name :: Name, phone :: String }

we could now use the Applicative instance for Parser to make an
employee parser from name and phone parsers. That is, if

parseName :: Parser Name

parsePhone :: Parser String

then

Emp <$> parseName <*> parsePhone :: Parser Employee

is a parser which first reads a name from the input, then a phone
number, and returns them combined into an Employee record. Of
course, this assumes that the name and phone number are right
next to each other in the input, with no intervening separators. We’ll
see later how to make parsers that can throw away extra stuff that
doesn’t directly correspond to information you want to parse.

Exercise 3
We can also test your Applicative instance using other simple

applications of functions to multiple parsers. You should implement
each of the following exercises using the Applicative interface to put
together simpler parsers into more complex ones. Do not implement
them using the low-level definition of a Parser! In other words, pre-
tend that you do not have access to the Parser constructor or even
know how the Parser type is defined.

• Create a parser

abParser :: Parser (Char, Char)

which expects to see the characters ’a’ and ’b’ and returns them
as a pair. That is,

*AParser> runParser abParser "abcdef"

Just ((’a’,’b’),"cdef")

*AParser> runParser abParser "aebcdf"

Nothing

• Now create a parser

abParser_ :: Parser ()

which acts in the same way as abParser but returns () instead of
the characters ’a’ and ’b’.

cis 194: homework 10 4

*AParser> runParser abParser_ "abcdef"

Just ((),"cdef")

*AParser> runParser abParser_ "aebcdf"

Nothing

• Create a parser intPair which reads two integer values separated
by a space and returns the integer values in a list. You should use
the provided posInt to parse the integer values.

*Parser> runParser intPair "12 34"

Just ([12,34],"")

Exercise 4
Applicative by itself can be used to make parsers for simple, fixed

formats. But for any format involving choice (e.g. “. . . after the colon
there can be a number or a word or parentheses. . . ”) Applicative is
not quite enough. To handle choice we turn to the Alternative class,
defined (essentially) as follows:

class Applicative f => Alternative f where

empty :: f a

(<|>) :: f a -> f a -> f a

(<|>) is intended to represent choice: that is, f1 <|> f2 represents
a choice between f1 and f2. empty should be the identity element for
(<|>), and often represents failure.

Write an Alternative instance for Parser:

• empty represents the parser which always fails.

• p1 <|> p2 represents the parser which first tries running p1. If
p1 succeeds then p2 is ignored and the result of p1 is returned.
Otherwise, if p1 fails, then p2 is tried instead.

Hint: there is already an Alternative instance for Maybe which you
may find useful.

Exercise 5
Implement a parser

intOrUppercase :: Parser ()

which parses either an integer value or an uppercase character, and
fails otherwise.

cis 194: homework 10 5

*Parser> runParser intOrUppercase "342abcd"

Just ((), "abcd")

*Parser> runParser intOrUppercase "XYZ"

Just ((), "YZ")

*Parser> runParser intOrUppercase "foo"

Nothing

Next week, we will use your parsing framework to build a more
sophisticated parser for a small programming language!

	Introduction
	Tools for building parsers

