--- /dev/null
+#lang racket
+
+(define (deriv exp var)
+ (cond ((number? exp) 0)
+ ((variable? exp) (if (same-variable? exp var) 1 0))
+ ((sum? exp) (make-sum (deriv (addend exp) var)
+ (deriv (augend exp) var)))
+ ((product? exp) (make-sum (make-product (multiplier exp)
+ (deriv (multiplicant exp) var))
+ (make-product (multiplicant exp)
+ (deriv (multiplier exp) var))))
+ ((exponentiation? exp) (let ((u (base exp))
+ (n (exponent exp)))
+ (make-product n
+ (make-product (make-exponentiation u (make-sum n -1))
+ (deriv u var)))))
+ (else (error "unknown type of expression - deriv" exp))))
+
+(define (variable? x) (symbol? x))
+
+(define (same-variable? x y)
+ (and (variable? x) (variable? y) (eq? x y)))
+
+;; sum
+(define (make-sum x y)
+ (cond ((equal? x 0) y)
+ ((equal? y 0) x)
+ ((and (number? x) (number? y)) (+ x y))
+ ((equal? x y) (make-product 2 x))
+ (else (list '+ x y))))
+
+(define (make-product x y)
+ (cond ((equal? x 1) y)
+ ((equal? y 1) x)
+ ((equal? x 0) 0)
+ ((equal? y 0) 0)
+ (else (list '* x y))))
+
+(define (sum? exp)
+ (and (pair? exp)
+ (eq? (car exp) '+)))
+
+(define (product? exp)
+ (and (pair? exp)
+ (eq? (car exp) '*)))
+
+(define (addend exp) (car (cdr exp)))
+
+(define (augend exp)
+ (define (augend* e1 . en)
+ (cond ((null? en) e1)
+ (else (make-sum e1 (apply augend* (car en) (cdr en))))))
+ (apply augend* (cdr (cdr exp))))
+
+(define (multiplicant exp) (car (cdr exp)))
+
+(define (multiplier exp)
+ (define (multiplier* e1 . en)
+ (cond ((null? en) e1)
+ (else (make-product e1 (apply multiplier* (car en) (cdr en))))))
+ (apply multiplier* (cdr (cdr exp))))
+
+;; exponentiation
+(define (exponentiation? exp) (eq? (car exp) '**))
+(define (base exp) (car (cdr exp)))
+(define (exponent exp) (car (cdr (cdr exp))))
+(define (make-exponentiation base exp)
+ (cond ((and (number? exp) (zero? exp)) 1)
+ ((and (number? exp) (= exp 1)) base)
+ (else (list '** base exp))))