def get_latencies(self):
"""Return a dict, indexed by category, that contains a dict of
latency numbers for each category. Each dict will contain the
- following keys: mean, median, 1_percentile, 10_percentile,
- 90_percentile, 95_percentile, 99_percentile, 999_percentile. If no
- samples have been collected for the given category, then that
- category name will not be present in the return value."""
+ following keys: mean, 01_0_percentile, 10_0_percentile,
+ 50_0_percentile (median), 90_0_percentile, 95_0_percentile,
+ 99_0_percentile, 99_9_percentile. If no samples have been collected
+ for the given category, then that category name will not be present
+ in the return value."""
# note that Amazon's Dynamo paper says they use 99.9% percentile.
output = {}
for category in self.latencies:
samples.sort()
count = len(samples)
stats["mean"] = sum(samples) / count
- stats["1_percentile"] = samples[int(0.01 * count)]
- stats["10_percentile"] = samples[int(0.1 * count)]
- stats["median"] = samples[int(0.5 * count)]
- stats["90_percentile"] = samples[int(0.9 * count)]
- stats["95_percentile"] = samples[int(0.95 * count)]
- stats["99_percentile"] = samples[int(0.99 * count)]
- stats["999_percentile"] = samples[int(0.999 * count)]
+ stats["01_0_percentile"] = samples[int(0.01 * count)]
+ stats["10_0_percentile"] = samples[int(0.1 * count)]
+ stats["50_0_percentile"] = samples[int(0.5 * count)]
+ stats["90_0_percentile"] = samples[int(0.9 * count)]
+ stats["95_0_percentile"] = samples[int(0.95 * count)]
+ stats["99_0_percentile"] = samples[int(0.99 * count)]
+ stats["99_9_percentile"] = samples[int(0.999 * count)]
output[category] = stats
return output
sorted(["allocate", "renew", "cancel", "get"]))
self.failUnlessEqual(len(ss.latencies["allocate"]), 1000)
self.failUnless(abs(output["allocate"]["mean"] - 9500) < 1)
- self.failUnless(abs(output["allocate"]["median"] - 9500) < 1)
- self.failUnless(abs(output["allocate"]["90_percentile"] - 9900) < 1)
- self.failUnless(abs(output["allocate"]["95_percentile"] - 9950) < 1)
- self.failUnless(abs(output["allocate"]["99_percentile"] - 9990) < 1)
- self.failUnless(abs(output["allocate"]["999_percentile"] - 9999) < 1)
+ self.failUnless(abs(output["allocate"]["01_0_percentile"] - 9010) < 1)
+ self.failUnless(abs(output["allocate"]["10_0_percentile"] - 9100) < 1)
+ self.failUnless(abs(output["allocate"]["50_0_percentile"] - 9500) < 1)
+ self.failUnless(abs(output["allocate"]["90_0_percentile"] - 9900) < 1)
+ self.failUnless(abs(output["allocate"]["95_0_percentile"] - 9950) < 1)
+ self.failUnless(abs(output["allocate"]["99_0_percentile"] - 9990) < 1)
+ self.failUnless(abs(output["allocate"]["99_9_percentile"] - 9999) < 1)
self.failUnlessEqual(len(ss.latencies["renew"]), 1000)
self.failUnless(abs(output["renew"]["mean"] - 500) < 1)
- self.failUnless(abs(output["renew"]["median"] - 500) < 1)
- self.failUnless(abs(output["renew"]["90_percentile"] - 900) < 1)
- self.failUnless(abs(output["renew"]["95_percentile"] - 950) < 1)
- self.failUnless(abs(output["renew"]["99_percentile"] - 990) < 1)
- self.failUnless(abs(output["renew"]["999_percentile"] - 999) < 1)
+ self.failUnless(abs(output["renew"]["01_0_percentile"] - 10) < 1)
+ self.failUnless(abs(output["renew"]["10_0_percentile"] - 100) < 1)
+ self.failUnless(abs(output["renew"]["50_0_percentile"] - 500) < 1)
+ self.failUnless(abs(output["renew"]["90_0_percentile"] - 900) < 1)
+ self.failUnless(abs(output["renew"]["95_0_percentile"] - 950) < 1)
+ self.failUnless(abs(output["renew"]["99_0_percentile"] - 990) < 1)
+ self.failUnless(abs(output["renew"]["99_9_percentile"] - 999) < 1)
self.failUnlessEqual(len(ss.latencies["cancel"]), 10)
self.failUnless(abs(output["cancel"]["mean"] - 9) < 1)
- self.failUnless(abs(output["cancel"]["median"] - 10) < 1)
- self.failUnless(abs(output["cancel"]["90_percentile"] - 18) < 1)
- self.failUnless(abs(output["cancel"]["95_percentile"] - 18) < 1)
- self.failUnless(abs(output["cancel"]["99_percentile"] - 18) < 1)
- self.failUnless(abs(output["cancel"]["999_percentile"] - 18) < 1)
+ self.failUnless(abs(output["cancel"]["01_0_percentile"] - 0) < 1)
+ self.failUnless(abs(output["cancel"]["10_0_percentile"] - 2) < 1)
+ self.failUnless(abs(output["cancel"]["50_0_percentile"] - 10) < 1)
+ self.failUnless(abs(output["cancel"]["90_0_percentile"] - 18) < 1)
+ self.failUnless(abs(output["cancel"]["95_0_percentile"] - 18) < 1)
+ self.failUnless(abs(output["cancel"]["99_0_percentile"] - 18) < 1)
+ self.failUnless(abs(output["cancel"]["99_9_percentile"] - 18) < 1)
self.failUnlessEqual(len(ss.latencies["get"]), 1)
self.failUnless(abs(output["get"]["mean"] - 5) < 1)
- self.failUnless(abs(output["get"]["median"] - 5) < 1)
- self.failUnless(abs(output["get"]["90_percentile"] - 5) < 1)
- self.failUnless(abs(output["get"]["95_percentile"] - 5) < 1)
- self.failUnless(abs(output["get"]["99_percentile"] - 5) < 1)
- self.failUnless(abs(output["get"]["999_percentile"] - 5) < 1)
+ self.failUnless(abs(output["get"]["01_0_percentile"] - 5) < 1)
+ self.failUnless(abs(output["get"]["10_0_percentile"] - 5) < 1)
+ self.failUnless(abs(output["get"]["50_0_percentile"] - 5) < 1)
+ self.failUnless(abs(output["get"]["90_0_percentile"] - 5) < 1)
+ self.failUnless(abs(output["get"]["95_0_percentile"] - 5) < 1)
+ self.failUnless(abs(output["get"]["99_0_percentile"] - 5) < 1)
+ self.failUnless(abs(output["get"]["99_9_percentile"] - 5) < 1)