--- /dev/null
+(ns sicp.ex2_58b
+ (:refer-clojure :exclude (number?))
+ (:use [clojure.test]
+ [sicp.utils]))
+
+;;; differentiation of infix expressions
+;; part b. Assume standard algebraic form.
+;;
+(defn third [x]
+ (if (= (count x) 3)
+ (second (rest x))
+ (rest (rest x))))
+
+(defn same-op? [op x]
+ (= op x))
+
+(defn peek-op [expr]
+ (second expr))
+
+(defn- first-expr* [expr op]
+ (cond (and (nil? (peek-op expr)) (empty? expr)) nil
+ (and (same-op? op (peek-op expr))
+ (= op '*)) (cons (first expr) (cons (second expr) (first-expr* (rest (rest expr)) op)))
+ :else (list (first expr))))
+
+(defn first-expr [expr]
+ (let [op (second expr)]
+ (when (not (nil? op))
+ (first-expr* expr op))))
+
+(defn- rest-expr* [expr op]
+ (cond (empty? expr) nil
+ (and (same-op? op (peek-op expr)) (= op '*)) (rest-expr* (rest (rest expr)) op)
+ :else (rest (rest expr))))
+
+(defn rest-expr [expr]
+ (let [op (second expr)]
+ (when (not (nil? op))
+ (rest-expr* expr op))))
+
+(defn- op-expr* [expr op]
+ (cond (empty? expr) nil
+ (same-op? op (peek-op expr)) (op-expr* (rest (rest expr)) op)
+ :else (if (= op '*) (peek-op expr) op)))
+
+(defn op-expr [expr]
+ (let [op (second expr)]
+ (when (not (nil? op))
+ (op-expr* expr op))))
+
+(defn exponentiation? [exp]
+ (= (second exp) '**))
+
+(defn base [exp]
+ (first exp))
+
+(defn exponent [exp]
+ (third exp))
+
+(defn variable? [x]
+ (if (and (list? x)
+ (= (count x) 1))
+ (symbol? (first x))
+ (symbol? x)))
+
+(defn same-variable? [v1 v2]
+ (cond (list? v1) (and (variable? v1)
+ (variable? v2)
+ (= (first v1) v2))
+ (list? v2) (and (variable? v1)
+ (variable? v2)
+ (= v1 (first v2)))
+ :else (and (variable? v1)
+ (variable? v2)
+ (= v1 v2))))
+
+(defn number? [exp]
+ (if (and (list? exp)
+ (= (count exp) 1))
+ (clojure.core/number? (first exp))
+ (clojure.core/number? exp)))
+
+(defn =number? [exp num]
+ (and (number? exp)
+ (= exp num)))
+
+(defn make-sum [a1 a2]
+ (cond (=number? a1 0) a2
+ (=number? a2 0) a1
+ (and (number? a1) (number? a2)) (+ a1 a2)
+ :else (list a1 '+ a2)))
+
+(defn make-product [m1 m2]
+ (cond (or (=number? m1 0) (=number? m2 0)) 0
+ (=number? m1 1) m2
+ (=number? m2 1) m1
+ (and (number? m1) (number? m2)) (* m1 m2)
+ :else (list m1 '* m2)))
+
+(defn sum? [x]
+ (and (list? x) (= (op-expr x) '+)))
+
+(defn addend [s]
+ (first-expr s))
+
+(defn augend [s]
+ (rest-expr s))
+
+(defn product? [x]
+ (= (second x) '*))
+
+(defn multiplier [p]
+ (first p))
+
+(defn multiplicand [p]
+ (rest (rest p)))
+
+(defn make-exponentiation [b n]
+ (cond (=number? b 1) 1
+ (=number? b 0) 0
+ (=number? n 1) b
+ (=number? n 0) 1
+ (and (number? b) (number? n)) (Math/pow b n)
+ :else (list b '** n)))
+
+(defn deriv [exp var]
+ (cond (number? exp) 0
+ (variable? exp) (if (same-variable? exp var) 1 0)
+ (sum? exp) (make-sum (deriv (addend exp) var)
+ (deriv (augend exp) var))
+ (product? exp) (make-sum (make-product (multiplier exp)
+ (deriv (multiplicand exp) var))
+ (make-product (deriv (multiplier exp) var)
+ (multiplicand exp)))
+ (exponentiation? exp) (make-product (exponent exp)
+ (make-product (make-exponentiation (base exp)
+ (- (exponent exp) 1))
+ (deriv (base exp) var)))
+ :else (str "unknown expression type -- deriv " exp)))
+
+
+(deftest test-deriv-and-helpers
+ (let [e1 1
+ e2 '(x)
+ e3 '(x + 1)
+ e4 '(x * y)
+ e5 '(x * x)
+ e6 'x
+ e7 '(x + 2 * x + 2)
+ e8 '(x * y + 1)]
+ (are [p q] [= p q]
+ (first-expr e3) '(x)
+ (op-expr e3) '+
+ (rest-expr e3) '(1)
+ (first-expr e4) '(x * y)
+ (op-expr e4) nil
+ (rest-expr e4) ()
+ (first-expr e7) '(x)
+ (op-expr e7) '+
+ (rest-expr e7) '(2 * x + 2)
+ (first-expr e8) '(x * y)
+ (op-expr e8) '+
+ (rest-expr e8) '(1))))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+