From b01cd3c4a7d5a3409e584d85bde1e007b30ab4fb Mon Sep 17 00:00:00 2001
From: Ramakrishnan Muthukrishnan <vu3rdd@gmail.com>
Date: Wed, 24 Mar 2010 10:02:37 +0530
Subject: [PATCH] - Exercise 1.1 to 1.5. - Newton's method of square root
 finding.

---
 chapter1/ch1_1.clj | 110 ++++++++++++++++++++++++++++++++++++++++++++-
 1 file changed, 109 insertions(+), 1 deletion(-)

diff --git a/chapter1/ch1_1.clj b/chapter1/ch1_1.clj
index 7361cd3..733f23c 100644
--- a/chapter1/ch1_1.clj
+++ b/chapter1/ch1_1.clj
@@ -6,4 +6,112 @@
   (+ (square x) (square y)))
 
 (defn f [a]
-  (sum-of-squares (+ a 1) (* a 2)))
\ No newline at end of file
+  (sum-of-squares (+ a 1) (* a 2)))
+
+(defn abs
+  "find absolute value of x"
+  [x]
+  (if (< x 0) (- x) x))
+
+(defn abs1 [x]
+  (cond (< x 0) (- x)
+	:else x))
+
+;; exercise 1.1: What is the result printed by the interpreter in response
+;;               to each expression (in order) ?
+
+(def a 3)
+(def b (+ a 1))
+
+(+ a b (* a b))  ; 19
+(= a b) ; false
+
+(if (and (> b a) (< b (* a b)))
+    b
+    a)   ; 4
+
+(cond (= a 4) 6
+      (= b 4) (+ 6 7 a)
+      :else 25)  ; 16
+
+(+ 2 (if (> b a) b a)) ; 6
+
+(* (cond (> a b) a
+	 (< a b) b
+	 :else -1)
+   (+ a 1))      ; 16
+
+;; exercise 1.2: Translate the given expression into prefix form
+(/ (+ 5 4 (- 2 (- 3 (+ 6 (/ 1 5)))))
+   (* 3 (- 6 2) (- 2 7)))  ; -71/300
+
+;; exercise 1.3:  Define a procedure that takes three numbers as
+;;                arguments and returns the sum of the squares of
+;;                the two larger numbers.
+(defn sort3 [a b c]
+  (cond (> b a) (sort3 b a c)
+	(< b c) (sort3 a c b)
+	:else [a b c]))
+
+(defn sum-of-sq-of-two-largest [a b c]
+  (apply sum-of-squares (take 2 (sort3 a b c))))
+
+;; exercise 1.4: Observe that our model of evaluation allows for
+;;               combinations whose operators are compound
+;;               expressions. Use this observation to describe the
+;;               behavior of the following procedure:
+;; (defn a-plus-abs-b [a b]
+;;   ((if (> b 0) + -) a b))
+(comment
+  If b is positive, we do (+ a b) and if it is negative, we do (- a b).
+  This makes use of the fact that the first element in a list is an
+  operand. Here, the operand is chosen based on other operators.
+  )
+
+;; exercise 1.5:  Ben Bitdiddle has invented a test to determine
+;;                whether the interpreter he is faced with is
+;;                using applicative-order evaluation or normal-order
+;;                evaluation. He defines the following two procedures:
+;; (defn p [] (p))
+;; (defn test [x y]
+;;   (if (= x 0)
+;;    0
+;;    y))
+;;
+;; Then he evaluates the expression
+;;
+;; (test 0 (p))
+;;
+;; What behavior will Ben observe with an interpreter that uses
+;; applicative-order evaluation?
+(comment
+  In the case of applicative order evaluation, the test gets into
+  and infinite loop (eventually using all the stack), as the parameters
+  are evaluated before they are actualy used in the function.
+  )
+;; What behavior will he observe with an interpreter that uses
+;; normal-order evaluation? Explain your answer.
+(comment
+  It will print 0, as (p) is not evaluated in this case.
+  )
+
+;; 1.1.7 Square root finding using Newton's method
+(defn sqrt-iter [guess x]
+  (if (good-enough? guess x)
+    guess
+    (sqrt-iter (improve guess x)
+	       x)))
+
+(defn improve [guess x]
+  (average guess (/ x guess)))
+
+(defn average [x y]
+  (/ (+ x y) 2))
+
+(defn good-enough? [guess x]
+  (< (abs (- (square guess) x)) 0.001))
+
+(defn sqrt [x]
+  (sqrt-iter 1.0 x))
+
+;; exercise 1.6
-- 
2.45.2