From: Ramakrishnan Muthukrishnan Date: Sun, 5 Sep 2010 16:41:43 +0000 (+0530) Subject: A partially working solution for 2.58b. Still need expression X-Git-Url: https://git.rkrishnan.org/specifications/%5B/%5D%20/%22news.html/$rel_link?a=commitdiff_plain;h=85c0a6f69117ef5e69bf1d573e4bf4c6340103a6;p=sicp.git A partially working solution for 2.58b. Still need expression simplification. --- diff --git a/src/sicp/ex2_58b.clj b/src/sicp/ex2_58b.clj new file mode 100644 index 0000000..9d2ffc9 --- /dev/null +++ b/src/sicp/ex2_58b.clj @@ -0,0 +1,180 @@ +(ns sicp.ex2_58b + (:refer-clojure :exclude (number?)) + (:use [clojure.test] + [sicp.utils])) + +;;; differentiation of infix expressions +;; part b. Assume standard algebraic form. +;; +(defn third [x] + (if (= (count x) 3) + (second (rest x)) + (rest (rest x)))) + +(defn same-op? [op x] + (= op x)) + +(defn peek-op [expr] + (second expr)) + +(defn- first-expr* [expr op] + (cond (and (nil? (peek-op expr)) (empty? expr)) nil + (and (same-op? op (peek-op expr)) + (= op '*)) (cons (first expr) (cons (second expr) (first-expr* (rest (rest expr)) op))) + :else (list (first expr)))) + +(defn first-expr [expr] + (let [op (second expr)] + (when (not (nil? op)) + (first-expr* expr op)))) + +(defn- rest-expr* [expr op] + (cond (empty? expr) nil + (and (same-op? op (peek-op expr)) (= op '*)) (rest-expr* (rest (rest expr)) op) + :else (rest (rest expr)))) + +(defn rest-expr [expr] + (let [op (second expr)] + (when (not (nil? op)) + (rest-expr* expr op)))) + +(defn- op-expr* [expr op] + (cond (empty? expr) nil + (same-op? op (peek-op expr)) (op-expr* (rest (rest expr)) op) + :else (if (= op '*) (peek-op expr) op))) + +(defn op-expr [expr] + (let [op (second expr)] + (when (not (nil? op)) + (op-expr* expr op)))) + +(defn exponentiation? [exp] + (= (second exp) '**)) + +(defn base [exp] + (first exp)) + +(defn exponent [exp] + (third exp)) + +(defn variable? [x] + (if (and (list? x) + (= (count x) 1)) + (symbol? (first x)) + (symbol? x))) + +(defn same-variable? [v1 v2] + (cond (list? v1) (and (variable? v1) + (variable? v2) + (= (first v1) v2)) + (list? v2) (and (variable? v1) + (variable? v2) + (= v1 (first v2))) + :else (and (variable? v1) + (variable? v2) + (= v1 v2)))) + +(defn number? [exp] + (if (and (list? exp) + (= (count exp) 1)) + (clojure.core/number? (first exp)) + (clojure.core/number? exp))) + +(defn =number? [exp num] + (and (number? exp) + (= exp num))) + +(defn make-sum [a1 a2] + (cond (=number? a1 0) a2 + (=number? a2 0) a1 + (and (number? a1) (number? a2)) (+ a1 a2) + :else (list a1 '+ a2))) + +(defn make-product [m1 m2] + (cond (or (=number? m1 0) (=number? m2 0)) 0 + (=number? m1 1) m2 + (=number? m2 1) m1 + (and (number? m1) (number? m2)) (* m1 m2) + :else (list m1 '* m2))) + +(defn sum? [x] + (and (list? x) (= (op-expr x) '+))) + +(defn addend [s] + (first-expr s)) + +(defn augend [s] + (rest-expr s)) + +(defn product? [x] + (= (second x) '*)) + +(defn multiplier [p] + (first p)) + +(defn multiplicand [p] + (rest (rest p))) + +(defn make-exponentiation [b n] + (cond (=number? b 1) 1 + (=number? b 0) 0 + (=number? n 1) b + (=number? n 0) 1 + (and (number? b) (number? n)) (Math/pow b n) + :else (list b '** n))) + +(defn deriv [exp var] + (cond (number? exp) 0 + (variable? exp) (if (same-variable? exp var) 1 0) + (sum? exp) (make-sum (deriv (addend exp) var) + (deriv (augend exp) var)) + (product? exp) (make-sum (make-product (multiplier exp) + (deriv (multiplicand exp) var)) + (make-product (deriv (multiplier exp) var) + (multiplicand exp))) + (exponentiation? exp) (make-product (exponent exp) + (make-product (make-exponentiation (base exp) + (- (exponent exp) 1)) + (deriv (base exp) var))) + :else (str "unknown expression type -- deriv " exp))) + + +(deftest test-deriv-and-helpers + (let [e1 1 + e2 '(x) + e3 '(x + 1) + e4 '(x * y) + e5 '(x * x) + e6 'x + e7 '(x + 2 * x + 2) + e8 '(x * y + 1)] + (are [p q] [= p q] + (first-expr e3) '(x) + (op-expr e3) '+ + (rest-expr e3) '(1) + (first-expr e4) '(x * y) + (op-expr e4) nil + (rest-expr e4) () + (first-expr e7) '(x) + (op-expr e7) '+ + (rest-expr e7) '(2 * x + 2) + (first-expr e8) '(x * y) + (op-expr e8) '+ + (rest-expr e8) '(1)))) + + + + + + + + + + + + + + + + +