From bffe14ef3e58224d0d455a975ae137788e93032c Mon Sep 17 00:00:00 2001 From: Brian Warner <warner@lothar.com> Date: Fri, 11 Jul 2008 21:34:36 -0700 Subject: [PATCH] add 1%,10% percentiles to the storage server latency output --- src/allmydata/storage.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/src/allmydata/storage.py b/src/allmydata/storage.py index 513b486f..775c47e3 100644 --- a/src/allmydata/storage.py +++ b/src/allmydata/storage.py @@ -821,10 +821,10 @@ class StorageServer(service.MultiService, Referenceable): def get_latencies(self): """Return a dict, indexed by category, that contains a dict of latency numbers for each category. Each dict will contain the - following keys: mean, median, 90_percentile, 95_percentile, - 99_percentile). If no samples have been collected for the given - category, then that category name will not be present in the return - value.""" + following keys: mean, median, 1_percentile, 10_percentile, + 90_percentile, 95_percentile, 99_percentile, 999_percentile. If no + samples have been collected for the given category, then that + category name will not be present in the return value.""" # note that Amazon's Dynamo paper says they use 99.9% percentile. output = {} for category in self.latencies: @@ -835,6 +835,8 @@ class StorageServer(service.MultiService, Referenceable): samples.sort() count = len(samples) stats["mean"] = sum(samples) / count + stats["1_percentile"] = samples[int(0.01 * count)] + stats["10_percentile"] = samples[int(0.1 * count)] stats["median"] = samples[int(0.5 * count)] stats["90_percentile"] = samples[int(0.9 * count)] stats["95_percentile"] = samples[int(0.95 * count)] -- 2.45.2