--- /dev/null
+#lang racket
+
+(define (deriv exp var)
+ (cond
+ [(number? exp) 0]
+ [(variable? exp) (if (same-variable? exp var) 1 0)]
+ [else ((get 'deriv (operator exp)) (operands exp)
+ var)]))
+
+(define (operator exp) (car exp))
+(define (operands exp) (cdr exp))
+
+;; part a
+#|
+
+The 'get' procedure fetches from the table, an appropriate lambda
+function which takes as input, the operands and the variable. The
+function will return the appropriate expressions for addition and
+multiplication.
+
+In theory we can define dispatch functions for number? and variable?.
+But for those functions, the dispatch functions will return a
+constant regardless of the input operands.
+|#
+
+;; part b
+(define deriv-sum
+ (lambda (exp var)
+ (make-sum (deriv (addend exp) var)
+ (deriv (augend exp) var))))
+
+(define deriv-prod
+ (lambda (exp var)
+ (make-sum (make-product (multiplier exp)
+ (deriv (multiplicand exp) var))
+ (make-product (deriv (multiplier exp) var)
+ (multiplicand exp)))))
+
+(define (install-deriv-package)
+ ;; internal procedures
+ (define (make-sum a1 a2) (list '+ a1 a2))
+ (define (make-product m1 m2) (list '* m1 m2))
+ (define (addend s) (car s))
+ (define (augend s) (cadr s))
+ (define (multiplier p) (car p))
+ (define (multiplicand p) (cadr p))
+ ;; public procedures
+ (define (variable? x) (symbol? x))
+ (define (same-variable? v1 v2)
+ (and (variable? v1) (variable? v2) (eq? v1 v2)))
+ (put 'deriv '+ deriv-sum)
+ (put 'deriv '* deriv-prod))
+
+;; part c
+(define deriv-exponentiation
+ (lambda (exp var)
+ (make-product (exponent exp)
+ (make-product (make-exponentiation (base exp)
+ (- (exponent exp) 1))
+ (deriv (base exp) var)))))
+
+(define (make-exponent base exp)
+ (list '** base exp))
+(define (base x) (car x))
+(define (exponent x) (cadr x))
+(put 'deriv '** deriv-exponentiation)
+
+;; part d.
+#|
+If we modify get, we just modify put and nothing else.
+|#
\ No newline at end of file