]> git.rkrishnan.org Git - tahoe-lafs/tahoe-lafs.git/commitdiff
Suppress a warning from win32eventreactor on Windows (patch v2). fixes #1681
authordavid-sarah <david-sarah@jacaranda.org>
Mon, 27 Feb 2012 19:03:17 +0000 (19:03 +0000)
committerdavid-sarah <david-sarah@jacaranda.org>
Mon, 27 Feb 2012 19:03:17 +0000 (19:03 +0000)
misc/operations_helpers/provisioning/provisioning.py [deleted file]
src/allmydata/_auto_deps.py

diff --git a/misc/operations_helpers/provisioning/provisioning.py b/misc/operations_helpers/provisioning/provisioning.py
deleted file mode 100644 (file)
index 37acd16..0000000
+++ /dev/null
@@ -1,776 +0,0 @@
-
-from nevow import inevow, rend, loaders, tags as T
-import math
-import util
-
-# factorial and binomial copied from
-# http://mail.python.org/pipermail/python-list/2007-April/435718.html
-
-def div_ceil(n, d):
-    """
-    The smallest integer k such that k*d >= n.
-    """
-    return (n/d) + (n%d != 0)
-
-def factorial(n):
-    """factorial(n): return the factorial of the integer n.
-    factorial(0) = 1
-    factorial(n) with n<0 is -factorial(abs(n))
-    """
-    result = 1
-    for i in xrange(1, abs(n)+1):
-        result *= i
-    assert n >= 0
-    return result
-
-def binomial(n, k):
-    assert 0 <= k <= n
-    if k == 0 or k == n:
-        return 1
-    # calculate n!/k! as one product, avoiding factors that
-    # just get canceled
-    P = k+1
-    for i in xrange(k+2, n+1):
-        P *= i
-    # if you are paranoid:
-    # C, rem = divmod(P, factorial(n-k))
-    # assert rem == 0
-    # return C
-    return P//factorial(n-k)
-
-class ProvisioningTool(rend.Page):
-    addSlash = True
-    docFactory = loaders.xmlfile(util.sibling("provisioning.xhtml"))
-
-    def render_forms(self, ctx, data):
-        req = inevow.IRequest(ctx)
-
-        def getarg(name, astype=int):
-            if req.method != "POST":
-                return None
-            if name in req.fields:
-                return astype(req.fields[name].value)
-            return None
-        return self.do_forms(getarg)
-
-
-    def do_forms(self, getarg):
-        filled = getarg("filled", bool)
-
-        def get_and_set(name, options, default=None, astype=int):
-            current_value = getarg(name, astype)
-            i_select = T.select(name=name)
-            for (count, description) in options:
-                count = astype(count)
-                if ((current_value is not None and count == current_value) or
-                    (current_value is None and count == default)):
-                    o = T.option(value=str(count), selected="true")[description]
-                else:
-                    o = T.option(value=str(count))[description]
-                i_select = i_select[o]
-            if current_value is None:
-                current_value = default
-            return current_value, i_select
-
-        sections = {}
-        def add_input(section, text, entry):
-            if section not in sections:
-                sections[section] = []
-            sections[section].extend([T.div[text, ": ", entry], "\n"])
-
-        def add_output(section, entry):
-            if section not in sections:
-                sections[section] = []
-            sections[section].extend([entry, "\n"])
-
-        def build_section(section):
-            return T.fieldset[T.legend[section], sections[section]]
-
-        def number(value, suffix=""):
-            scaling = 1
-            if value < 1:
-                fmt = "%1.2g%s"
-            elif value < 100:
-                fmt = "%.1f%s"
-            elif value < 1000:
-                fmt = "%d%s"
-            elif value < 1e6:
-                fmt = "%.2fk%s"; scaling = 1e3
-            elif value < 1e9:
-                fmt = "%.2fM%s"; scaling = 1e6
-            elif value < 1e12:
-                fmt = "%.2fG%s"; scaling = 1e9
-            elif value < 1e15:
-                fmt = "%.2fT%s"; scaling = 1e12
-            elif value < 1e18:
-                fmt = "%.2fP%s"; scaling = 1e15
-            else:
-                fmt = "huge! %g%s"
-            return fmt % (value / scaling, suffix)
-
-        user_counts = [(5, "5 users"),
-                       (50, "50 users"),
-                       (200, "200 users"),
-                       (1000, "1k users"),
-                       (10000, "10k users"),
-                       (50000, "50k users"),
-                       (100000, "100k users"),
-                       (500000, "500k users"),
-                       (1000000, "1M users"),
-                       ]
-        num_users, i_num_users = get_and_set("num_users", user_counts, 50000)
-        add_input("Users",
-                  "How many users are on this network?", i_num_users)
-
-        files_per_user_counts = [(100, "100 files"),
-                                 (1000, "1k files"),
-                                 (10000, "10k files"),
-                                 (100000, "100k files"),
-                                 (1e6, "1M files"),
-                                 ]
-        files_per_user, i_files_per_user = get_and_set("files_per_user",
-                                                       files_per_user_counts,
-                                                       1000)
-        add_input("Users",
-                  "How many files for each user? (avg)",
-                  i_files_per_user)
-
-        space_per_user_sizes = [(1e6, "1MB"),
-                                (10e6, "10MB"),
-                                (100e6, "100MB"),
-                                (200e6, "200MB"),
-                                (1e9, "1GB"),
-                                (2e9, "2GB"),
-                                (5e9, "5GB"),
-                                (10e9, "10GB"),
-                                (100e9, "100GB"),
-                                (1e12, "1TB"),
-                                (2e12, "2TB"),
-                                (5e12, "5TB"),
-                                ]
-        # Estimate ~5gb per user as a more realistic case
-        space_per_user, i_space_per_user = get_and_set("space_per_user",
-                                                       space_per_user_sizes,
-                                                       5e9)
-        add_input("Users",
-                  "How much data for each user? (avg)",
-                  i_space_per_user)
-
-        sharing_ratios = [(1.0, "1.0x"),
-                          (1.1, "1.1x"),
-                          (2.0, "2.0x"),
-                          ]
-        sharing_ratio, i_sharing_ratio = get_and_set("sharing_ratio",
-                                                     sharing_ratios, 1.0,
-                                                     float)
-        add_input("Users",
-                  "What is the sharing ratio? (1.0x is no-sharing and"
-                  " no convergence)", i_sharing_ratio)
-
-        # Encoding parameters
-        encoding_choices = [("3-of-10-5", "3.3x (3-of-10, repair below 5)"),
-                            ("3-of-10-8", "3.3x (3-of-10, repair below 8)"),
-                            ("5-of-10-7", "2x (5-of-10, repair below 7)"),
-                            ("8-of-10-9", "1.25x (8-of-10, repair below 9)"),
-                            ("27-of-30-28", "1.1x (27-of-30, repair below 28"),
-                            ("25-of-100-50", "4x (25-of-100, repair below 50)"),
-                            ]
-        encoding_parameters, i_encoding_parameters = \
-                             get_and_set("encoding_parameters",
-                                         encoding_choices, "3-of-10-5", str)
-        encoding_pieces = encoding_parameters.split("-")
-        k = int(encoding_pieces[0])
-        assert encoding_pieces[1] == "of"
-        n = int(encoding_pieces[2])
-        # we repair the file when the number of available shares drops below
-        # this value
-        repair_threshold = int(encoding_pieces[3])
-
-        add_input("Servers",
-                  "What are the default encoding parameters?",
-                  i_encoding_parameters)
-
-        # Server info
-        num_server_choices = [ (5, "5 servers"),
-                               (10, "10 servers"),
-                               (15, "15 servers"),
-                               (30, "30 servers"),
-                               (50, "50 servers"),
-                               (100, "100 servers"),
-                               (200, "200 servers"),
-                               (300, "300 servers"),
-                               (500, "500 servers"),
-                               (1000, "1k servers"),
-                               (2000, "2k servers"),
-                               (5000, "5k servers"),
-                               (10e3, "10k servers"),
-                               (100e3, "100k servers"),
-                               (1e6, "1M servers"),
-                               ]
-        num_servers, i_num_servers = \
-                     get_and_set("num_servers", num_server_choices, 30, int)
-        add_input("Servers",
-                  "How many servers are there?", i_num_servers)
-
-        # availability is measured in dBA = -dBF, where 0dBF is 100% failure,
-        # 10dBF is 10% failure, 20dBF is 1% failure, etc
-        server_dBA_choices = [ (10, "90% [10dBA] (2.4hr/day)"),
-                               (13, "95% [13dBA] (1.2hr/day)"),
-                               (20, "99% [20dBA] (14min/day or 3.5days/year)"),
-                               (23, "99.5% [23dBA] (7min/day or 1.75days/year)"),
-                               (30, "99.9% [30dBA] (87sec/day or 9hours/year)"),
-                               (40, "99.99% [40dBA] (60sec/week or 53min/year)"),
-                               (50, "99.999% [50dBA] (5min per year)"),
-                               ]
-        server_dBA, i_server_availability = \
-                    get_and_set("server_availability",
-                                server_dBA_choices,
-                                20, int)
-        add_input("Servers",
-                  "What is the server availability?", i_server_availability)
-
-        drive_MTBF_choices = [ (40, "40,000 Hours"),
-                               ]
-        drive_MTBF, i_drive_MTBF = \
-                    get_and_set("drive_MTBF", drive_MTBF_choices, 40, int)
-        add_input("Drives",
-                  "What is the hard drive MTBF?", i_drive_MTBF)
-        # http://www.tgdaily.com/content/view/30990/113/
-        # http://labs.google.com/papers/disk_failures.pdf
-        # google sees:
-        #  1.7% of the drives they replaced were 0-1 years old
-        #  8% of the drives they repalced were 1-2 years old
-        #  8.6% were 2-3 years old
-        #  6% were 3-4 years old, about 8% were 4-5 years old
-
-        drive_size_choices = [ (100, "100 GB"),
-                               (250, "250 GB"),
-                               (500, "500 GB"),
-                               (750, "750 GB"),
-                               (1000, "1000 GB"),
-                               (2000, "2000 GB"),
-                               (3000, "3000 GB"),
-                               ]
-        drive_size, i_drive_size = \
-                    get_and_set("drive_size", drive_size_choices, 3000, int)
-        drive_size = drive_size * 1e9
-        add_input("Drives",
-                  "What is the capacity of each hard drive?", i_drive_size)
-        drive_failure_model_choices = [ ("E", "Exponential"),
-                                        ("U", "Uniform"),
-                                        ]
-        drive_failure_model, i_drive_failure_model = \
-                             get_and_set("drive_failure_model",
-                                         drive_failure_model_choices,
-                                         "E", str)
-        add_input("Drives",
-                  "How should we model drive failures?", i_drive_failure_model)
-
-        # drive_failure_rate is in failures per second
-        if drive_failure_model == "E":
-            drive_failure_rate = 1.0 / (drive_MTBF * 1000 * 3600)
-        else:
-            drive_failure_rate = 0.5 / (drive_MTBF * 1000 * 3600)
-
-        # deletion/gc/ownership mode
-        ownership_choices = [ ("A", "no deletion, no gc, no owners"),
-                              ("B", "deletion, no gc, no owners"),
-                              ("C", "deletion, share timers, no owners"),
-                              ("D", "deletion, no gc, yes owners"),
-                              ("E", "deletion, owner timers"),
-                              ]
-        ownership_mode, i_ownership_mode = \
-                        get_and_set("ownership_mode", ownership_choices,
-                                    "A", str)
-        add_input("Servers",
-                  "What is the ownership mode?", i_ownership_mode)
-
-        # client access behavior
-        access_rates = [ (1, "one file per day"),
-                         (10, "10 files per day"),
-                         (100, "100 files per day"),
-                         (1000, "1k files per day"),
-                         (10e3, "10k files per day"),
-                         (100e3, "100k files per day"),
-                         ]
-        download_files_per_day, i_download_rate = \
-                                get_and_set("download_rate", access_rates,
-                                            100, int)
-        add_input("Users",
-                  "How many files are downloaded per day?", i_download_rate)
-        download_rate = 1.0 * download_files_per_day / (24*60*60)
-
-        upload_files_per_day, i_upload_rate = \
-                              get_and_set("upload_rate", access_rates,
-                                          10, int)
-        add_input("Users",
-                  "How many files are uploaded per day?", i_upload_rate)
-        upload_rate = 1.0 * upload_files_per_day / (24*60*60)
-
-        delete_files_per_day, i_delete_rate = \
-                              get_and_set("delete_rate", access_rates,
-                                          10, int)
-        add_input("Users",
-                  "How many files are deleted per day?", i_delete_rate)
-        delete_rate = 1.0 * delete_files_per_day / (24*60*60)
-
-
-        # the value is in days
-        lease_timers = [ (1, "one refresh per day"),
-                         (7, "one refresh per week"),
-                         ]
-        lease_timer, i_lease = \
-                     get_and_set("lease_timer", lease_timers,
-                                 7, int)
-        add_input("Users",
-                  "How frequently do clients refresh files or accounts? "
-                  "(if necessary)",
-                  i_lease)
-        seconds_per_lease = 24*60*60*lease_timer
-
-        check_timer_choices = [ (1, "every week"),
-                                (4, "every month"),
-                                (8, "every two months"),
-                                (16, "every four months"),
-                                ]
-        check_timer, i_check_timer = \
-                     get_and_set("check_timer", check_timer_choices, 4, int)
-        add_input("Users",
-                  "How frequently should we check on each file?",
-                  i_check_timer)
-        file_check_interval = check_timer * 7 * 24 * 3600
-
-
-        if filled:
-            add_output("Users", T.div["Total users: %s" % number(num_users)])
-            add_output("Users",
-                       T.div["Files per user: %s" % number(files_per_user)])
-            file_size = 1.0 * space_per_user / files_per_user
-            add_output("Users",
-                       T.div["Average file size: ", number(file_size)])
-            total_files = num_users * files_per_user / sharing_ratio
-
-            add_output("Grid",
-                       T.div["Total number of files in grid: ",
-                             number(total_files)])
-            total_space = num_users * space_per_user / sharing_ratio
-            add_output("Grid",
-                       T.div["Total volume of plaintext in grid: ",
-                             number(total_space, "B")])
-
-            total_shares = n * total_files
-            add_output("Grid",
-                       T.div["Total shares in grid: ", number(total_shares)])
-            expansion = float(n) / float(k)
-
-            total_usage = expansion * total_space
-            add_output("Grid",
-                       T.div["Share data in grid: ", number(total_usage, "B")])
-
-            if n > num_servers:
-                # silly configuration, causes Tahoe2 to wrap and put multiple
-                # shares on some servers.
-                add_output("Servers",
-                           T.div["non-ideal: more shares than servers"
-                                 " (n=%d, servers=%d)" % (n, num_servers)])
-                # every file has at least one share on every server
-                buckets_per_server = total_files
-                shares_per_server = total_files * ((1.0 * n) / num_servers)
-            else:
-                # if nobody is full, then no lease requests will be turned
-                # down for lack of space, and no two shares for the same file
-                # will share a server. Therefore the chance that any given
-                # file has a share on any given server is n/num_servers.
-                buckets_per_server = total_files * ((1.0 * n) / num_servers)
-                # since each such represented file only puts one share on a
-                # server, the total number of shares per server is the same.
-                shares_per_server = buckets_per_server
-            add_output("Servers",
-                       T.div["Buckets per server: ",
-                             number(buckets_per_server)])
-            add_output("Servers",
-                       T.div["Shares per server: ",
-                             number(shares_per_server)])
-
-            # how much space is used on the storage servers for the shares?
-            #  the share data itself
-            share_data_per_server = total_usage / num_servers
-            add_output("Servers",
-                       T.div["Share data per server: ",
-                             number(share_data_per_server, "B")])
-            # this is determined empirically. H=hashsize=32, for a one-segment
-            # file and 3-of-10 encoding
-            share_validation_per_server = 266 * shares_per_server
-            # this could be 423*buckets_per_server, if we moved the URI
-            # extension into a separate file, but that would actually consume
-            # *more* space (minimum filesize is 4KiB), unless we moved all
-            # shares for a given bucket into a single file.
-            share_uri_extension_per_server = 423 * shares_per_server
-
-            # ownership mode adds per-bucket data
-            H = 32 # depends upon the desired security of delete/refresh caps
-            # bucket_lease_size is the amount of data needed to keep track of
-            # the delete/refresh caps for each bucket.
-            bucket_lease_size = 0
-            client_bucket_refresh_rate = 0
-            owner_table_size = 0
-            if ownership_mode in ("B", "C", "D", "E"):
-                bucket_lease_size = sharing_ratio * 1.0 * H
-            if ownership_mode in ("B", "C"):
-                # refreshes per second per client
-                client_bucket_refresh_rate = (1.0 * n * files_per_user /
-                                              seconds_per_lease)
-                add_output("Users",
-                           T.div["Client share refresh rate (outbound): ",
-                                 number(client_bucket_refresh_rate, "Hz")])
-                server_bucket_refresh_rate = (client_bucket_refresh_rate *
-                                              num_users / num_servers)
-                add_output("Servers",
-                           T.div["Server share refresh rate (inbound): ",
-                                 number(server_bucket_refresh_rate, "Hz")])
-            if ownership_mode in ("D", "E"):
-                # each server must maintain a bidirectional mapping from
-                # buckets to owners. One way to implement this would be to
-                # put a list of four-byte owner numbers into each bucket, and
-                # a list of four-byte share numbers into each owner (although
-                # of course we'd really just throw it into a database and let
-                # the experts take care of the details).
-                owner_table_size = 2*(buckets_per_server * sharing_ratio * 4)
-
-            if ownership_mode in ("E",):
-                # in this mode, clients must refresh one timer per server
-                client_account_refresh_rate = (1.0 * num_servers /
-                                               seconds_per_lease)
-                add_output("Users",
-                           T.div["Client account refresh rate (outbound): ",
-                                 number(client_account_refresh_rate, "Hz")])
-                server_account_refresh_rate = (client_account_refresh_rate *
-                                              num_users / num_servers)
-                add_output("Servers",
-                           T.div["Server account refresh rate (inbound): ",
-                                 number(server_account_refresh_rate, "Hz")])
-
-            # TODO: buckets vs shares here is a bit wonky, but in
-            # non-wrapping grids it shouldn't matter
-            share_lease_per_server = bucket_lease_size * buckets_per_server
-            share_ownertable_per_server = owner_table_size
-
-            share_space_per_server = (share_data_per_server +
-                                      share_validation_per_server +
-                                      share_uri_extension_per_server +
-                                      share_lease_per_server +
-                                      share_ownertable_per_server)
-            add_output("Servers",
-                       T.div["Share space per server: ",
-                             number(share_space_per_server, "B"),
-                             " (data ",
-                             number(share_data_per_server, "B"),
-                             ", validation ",
-                             number(share_validation_per_server, "B"),
-                             ", UEB ",
-                             number(share_uri_extension_per_server, "B"),
-                             ", lease ",
-                             number(share_lease_per_server, "B"),
-                             ", ownertable ",
-                             number(share_ownertable_per_server, "B"),
-                             ")",
-                             ])
-
-
-            # rates
-            client_download_share_rate = download_rate * k
-            client_download_byte_rate = download_rate * file_size
-            add_output("Users",
-                       T.div["download rate: shares = ",
-                             number(client_download_share_rate, "Hz"),
-                             " , bytes = ",
-                             number(client_download_byte_rate, "Bps"),
-                             ])
-            total_file_check_rate = 1.0 * total_files / file_check_interval
-            client_check_share_rate = total_file_check_rate / num_users
-            add_output("Users",
-                       T.div["file check rate: shares = ",
-                             number(client_check_share_rate, "Hz"),
-                             " (interval = %s)" %
-                             number(1 / client_check_share_rate, "s"),
-                             ])
-
-            client_upload_share_rate = upload_rate * n
-            # TODO: doesn't include overhead
-            client_upload_byte_rate = upload_rate * file_size * expansion
-            add_output("Users",
-                       T.div["upload rate: shares = ",
-                             number(client_upload_share_rate, "Hz"),
-                             " , bytes = ",
-                             number(client_upload_byte_rate, "Bps"),
-                             ])
-            client_delete_share_rate = delete_rate * n
-
-            server_inbound_share_rate = (client_upload_share_rate *
-                                         num_users / num_servers)
-            server_inbound_byte_rate = (client_upload_byte_rate *
-                                        num_users / num_servers)
-            add_output("Servers",
-                       T.div["upload rate (inbound): shares = ",
-                             number(server_inbound_share_rate, "Hz"),
-                             " , bytes = ",
-                              number(server_inbound_byte_rate, "Bps"),
-                             ])
-            add_output("Servers",
-                       T.div["share check rate (inbound): ",
-                             number(total_file_check_rate * n / num_servers,
-                                    "Hz"),
-                             ])
-
-            server_share_modify_rate = ((client_upload_share_rate +
-                                         client_delete_share_rate) *
-                                         num_users / num_servers)
-            add_output("Servers",
-                       T.div["share modify rate: shares = ",
-                             number(server_share_modify_rate, "Hz"),
-                             ])
-
-            server_outbound_share_rate = (client_download_share_rate *
-                                          num_users / num_servers)
-            server_outbound_byte_rate = (client_download_byte_rate *
-                                         num_users / num_servers)
-            add_output("Servers",
-                       T.div["download rate (outbound): shares = ",
-                             number(server_outbound_share_rate, "Hz"),
-                             " , bytes = ",
-                              number(server_outbound_byte_rate, "Bps"),
-                             ])
-
-
-            total_share_space = num_servers * share_space_per_server
-            add_output("Grid",
-                       T.div["Share space consumed: ",
-                             number(total_share_space, "B")])
-            add_output("Grid",
-                       T.div[" %% validation: %.2f%%" %
-                             (100.0 * share_validation_per_server /
-                              share_space_per_server)])
-            add_output("Grid",
-                       T.div[" %% uri-extension: %.2f%%" %
-                             (100.0 * share_uri_extension_per_server /
-                              share_space_per_server)])
-            add_output("Grid",
-                       T.div[" %% lease data: %.2f%%" %
-                             (100.0 * share_lease_per_server /
-                              share_space_per_server)])
-            add_output("Grid",
-                       T.div[" %% owner data: %.2f%%" %
-                             (100.0 * share_ownertable_per_server /
-                              share_space_per_server)])
-            add_output("Grid",
-                       T.div[" %% share data: %.2f%%" %
-                             (100.0 * share_data_per_server /
-                              share_space_per_server)])
-            add_output("Grid",
-                       T.div["file check rate: ",
-                             number(total_file_check_rate,
-                                    "Hz")])
-
-            total_drives = max(div_ceil(int(total_share_space),
-                                        int(drive_size)),
-                               num_servers)
-            add_output("Drives",
-                       T.div["Total drives: ", number(total_drives), " drives"])
-            drives_per_server = div_ceil(total_drives, num_servers)
-            add_output("Servers",
-                       T.div["Drives per server: ", drives_per_server])
-
-            # costs
-            if drive_size == 3000 * 1e9:
-                add_output("Servers", T.div["3000GB drive: $250 each"])
-                drive_cost = 250
-            else:
-                add_output("Servers",
-                           T.div[T.b["unknown cost per drive, assuming $100"]])
-                drive_cost = 100
-
-            if drives_per_server <= 4:
-                add_output("Servers", T.div["1U box with <= 4 drives: $1500"])
-                server_cost = 1500 # typical 1U box
-            elif drives_per_server <= 12:
-                add_output("Servers", T.div["2U box with <= 12 drives: $2500"])
-                server_cost = 2500 # 2U box
-            else:
-                add_output("Servers",
-                           T.div[T.b["Note: too many drives per server, "
-                                     "assuming $3000"]])
-                server_cost = 3000
-
-            server_capital_cost = (server_cost + drives_per_server * drive_cost)
-            total_server_cost = float(num_servers * server_capital_cost)
-            add_output("Servers", T.div["Capital cost per server: $",
-                                        server_capital_cost])
-            add_output("Grid", T.div["Capital cost for all servers: $",
-                                     number(total_server_cost)])
-            # $70/Mbps/mo
-            # $44/server/mo power+space
-            server_bandwidth = max(server_inbound_byte_rate,
-                                   server_outbound_byte_rate)
-            server_bandwidth_mbps = div_ceil(int(server_bandwidth*8), int(1e6))
-            server_monthly_cost = 70*server_bandwidth_mbps + 44
-            add_output("Servers", T.div["Monthly cost per server: $",
-                                        server_monthly_cost])
-            add_output("Users", T.div["Capital cost per user: $",
-                                      number(total_server_cost / num_users)])
-
-            # reliability
-            any_drive_failure_rate = total_drives * drive_failure_rate
-            any_drive_MTBF = 1 // any_drive_failure_rate  # in seconds
-            any_drive_MTBF_days = any_drive_MTBF / 86400
-            add_output("Drives",
-                       T.div["MTBF (any drive): ",
-                             number(any_drive_MTBF_days), " days"])
-            drive_replacement_monthly_cost = (float(drive_cost)
-                                              * any_drive_failure_rate
-                                              *30*86400)
-            add_output("Grid",
-                       T.div["Monthly cost of replacing drives: $",
-                             number(drive_replacement_monthly_cost)])
-
-            total_server_monthly_cost = float(num_servers * server_monthly_cost
-                                              + drive_replacement_monthly_cost)
-
-            add_output("Grid", T.div["Monthly cost for all servers: $",
-                                     number(total_server_monthly_cost)])
-            add_output("Users",
-                       T.div["Monthly cost per user: $",
-                             number(total_server_monthly_cost / num_users)])
-
-            # availability
-            file_dBA = self.file_availability(k, n, server_dBA)
-            user_files_dBA = self.many_files_availability(file_dBA,
-                                                          files_per_user)
-            all_files_dBA = self.many_files_availability(file_dBA, total_files)
-            add_output("Users",
-                       T.div["availability of: ",
-                             "arbitrary file = %d dBA, " % file_dBA,
-                             "all files of user1 = %d dBA, " % user_files_dBA,
-                             "all files in grid = %d dBA" % all_files_dBA,
-                             ],
-                       )
-
-            time_until_files_lost = (n-k+1) / any_drive_failure_rate
-            add_output("Grid",
-                       T.div["avg time until files are lost: ",
-                             number(time_until_files_lost, "s"), ", ",
-                             number(time_until_files_lost/86400, " days"),
-                             ])
-
-            share_data_loss_rate = any_drive_failure_rate * drive_size
-            add_output("Grid",
-                       T.div["share data loss rate: ",
-                             number(share_data_loss_rate,"Bps")])
-
-            # the worst-case survival numbers occur when we do a file check
-            # and the file is just above the threshold for repair (so we
-            # decide to not repair it). The question is then: what is the
-            # chance that the file will decay so badly before the next check
-            # that we can't recover it? The resulting probability is per
-            # check interval.
-            # Note that the chances of us getting into this situation are low.
-            P_disk_failure_during_interval = (drive_failure_rate *
-                                              file_check_interval)
-            disk_failure_dBF = 10*math.log10(P_disk_failure_during_interval)
-            disk_failure_dBA = -disk_failure_dBF
-            file_survives_dBA = self.file_availability(k, repair_threshold,
-                                                       disk_failure_dBA)
-            user_files_survives_dBA = self.many_files_availability( \
-                file_survives_dBA, files_per_user)
-            all_files_survives_dBA = self.many_files_availability( \
-                file_survives_dBA, total_files)
-            add_output("Users",
-                       T.div["survival of: ",
-                             "arbitrary file = %d dBA, " % file_survives_dBA,
-                             "all files of user1 = %d dBA, " %
-                             user_files_survives_dBA,
-                             "all files in grid = %d dBA" %
-                             all_files_survives_dBA,
-                             " (per worst-case check interval)",
-                             ])
-
-
-
-        all_sections = []
-        all_sections.append(build_section("Users"))
-        all_sections.append(build_section("Servers"))
-        all_sections.append(build_section("Drives"))
-        if "Grid" in sections:
-            all_sections.append(build_section("Grid"))
-
-        f = T.form(action=".", method="post", enctype="multipart/form-data")
-
-        if filled:
-            action = "Recompute"
-        else:
-            action = "Compute"
-
-        f = f[T.input(type="hidden", name="filled", value="true"),
-              T.input(type="submit", value=action),
-              all_sections,
-              ]
-
-        try:
-            from allmydata import reliability
-            # we import this just to test to see if the page is available
-            _hush_pyflakes = reliability
-            del _hush_pyflakes
-            f = [T.div[T.a(href="../reliability")["Reliability Math"]], f]
-        except ImportError:
-            pass
-
-        return f
-
-    def file_availability(self, k, n, server_dBA):
-        """
-        The full formula for the availability of a specific file is::
-
-         1 - sum([choose(N,i) * p**i * (1-p)**(N-i)] for i in range(k)])
-
-        Where choose(N,i) = N! / ( i! * (N-i)! ) . Note that each term of
-        this summation is the probability that there are exactly 'i' servers
-        available, and what we're doing is adding up the cases where i is too
-        low.
-
-        This is a nuisance to calculate at all accurately, especially once N
-        gets large, and when p is close to unity. So we make an engineering
-        approximation: if (1-p) is very small, then each [i] term is much
-        larger than the [i-1] term, and the sum is dominated by the i=k-1
-        term. This only works for (1-p) < 10%, and when the choose() function
-        doesn't rise fast enough to compensate. For high-expansion encodings
-        (3-of-10, 25-of-100), the choose() function is rising at the same
-        time as the (1-p)**(N-i) term, so that's not an issue. For
-        low-expansion encodings (7-of-10, 75-of-100) the two values are
-        moving in opposite directions, so more care must be taken.
-
-        Note that the p**i term has only a minor effect as long as (1-p)*N is
-        small, and even then the effect is attenuated by the 1-p term.
-        """
-
-        assert server_dBA > 9  # >=90% availability to use the approximation
-        factor = binomial(n, k-1)
-        factor_dBA = 10 * math.log10(factor)
-        exponent = n - k + 1
-        file_dBA = server_dBA * exponent - factor_dBA
-        return file_dBA
-
-    def many_files_availability(self, file_dBA, num_files):
-        """The probability that 'num_files' independent bernoulli trials will
-        succeed (i.e. we can recover all files in the grid at any given
-        moment) is p**num_files . Since p is close to unity, we express in p
-        in dBA instead, so we can get useful precision on q (=1-p), and then
-        the formula becomes::
-
-         P_some_files_unavailable = 1 - (1 - q)**num_files
-
-        That (1-q)**n expands with the usual binomial sequence, 1 - nq +
-        Xq**2 ... + Xq**n . We use the same approximation as before, since we
-        know q is close to zero, and we get to ignore all the terms past -nq.
-        """
-
-        many_files_dBA = file_dBA - 10 * math.log10(num_files)
-        return many_files_dBA
index 44d50d7609e78ac5f63fa030dae4275903bdcfea..5bb2b13ae095ed622afae75701dc3295ace35042 100644 (file)
@@ -120,6 +120,7 @@ deprecation_messages = [
 
 user_warning_messages = [
     "Hashing uninitialized InterfaceClass instance",
+    "Reliable disconnection notification requires pywin32 215 or later",
 ]
 
 warning_imports = [